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ABSTRACT

A graph is 2-stratified if its vertex set is partitioned into two classes, where the
vertices in one class are colored red and those in the other class are colored blue.
Let F be a 2-stratified graph rooted at some blue vertex v. An F'-coloring of a graph
G is a red-blue coloring of the vertices of G in which every blue vertex v belongs to
a copy of F rooted at v. The F-domination number yx(G) is the minimum number
of red vertices in an F-coloring of G. In this paper, we study F-domination where
F' is a red-blue-blue path of order 3 rooted at a blue end-vertex. It is shown that
a triple (A, B,C) of positive integers with A < B < 2A and B > 2 is realizable
as the domination number, open domination number, and F-domination number,
respectively, for some connected graph if and only if (A, B,C) # (k,k,C) for any
integers k and C with C > k > 2.
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1 Introduction

An area of graph theory that has received considerable attention in recent decades is domina-
tion. Although initiated by Berge [1] and Ore [9] in 1958 and 1962, respectively, it was a paper
by Cockayne and Hedetniemi [5] in 1977 that began the popularity of the subject and has led
to a theory. This subject is based on a very simple definition: A vertex v dominates a vertex u
in a graph G if either © = v or u is adjacent to v. Over the years a large number of variations
of domination have surfaced. Each type of domination is based on a condition under which a
vertex v dominates a vertex u in a graph G. As with standard domination, many definitions
of domination state that a vertex v dominates a vertex u in a graph G if either u = v or u
satisfies some condition involving v. Then these are those definitions of domination that state
a vertex v dominates a vertex u not if u = v but if u satisfies some condition involving v. The
simplest example of this is total or open domination where v dominates u if u is adjacent to v.
An advantage of the former type of domination is that every graph G contains a set of vertices
(called a dominating set) such that every vertex of G is dominated by some vertex of S; while
this is not necessarily the case for the latter type of domination. For example, graphs with
isolated vertices contain no open dominating sets.



In 1999 a new way of looking at domination was introduced in [3] that encompassed several
of the best known domination parameters defined earlier (including standard domination and
open domination). This gave rise to an infinite class of domination parameters, each of which is
defined for every graph. This new view of domination was based on a simple but fundamental
idea introduced by Rashidi [10] in 1994. A graph whose vertex set V(G) is partitioned is a
stratified graph. If V(G) is partitioned into k subsets, then G is k-stratified. In particular, the
vertex set of a 2-stratified graph is partitioned into two subsets. Typically, the vertices of one
subset in a 2-stratified graph are considered to be colored red and those in the other subset
are colored blue. A red-blue coloring of a graph G is an assignment of colors to the vertices of
G, where each vertex is colored either red or blue. In a red-blue coloring, however, all vertices
of G may be colored the same. A red-blue coloring in which at least one vertex is colored red
and at least one vertex is colored blue and thereby produces a 2-stratification of G.

We now describe how domination was defined in [3] with the aid of stratification. Let F'
be a 2-stratified graph in which some blue vertex r is designated as the “root” of F. Thus F
is said to be rooted at r. Since F' is 2-stratified, necessarily F' contains at least two vertices, at
least one of which is colored red and at least one of which is colored blue. Of course, the root
r is blue but there may be other blue vertices in F'. Now let G be a graph. By an F-coloring
of a graph GG, we mean a red-blue coloring of G such that for every blue vertex u of G, there
is a copy of F in G with r at u. Therefore, every blue vertex u of G belongs to a copy F' of
F rooted at u. A red vertex v in G is said to F-dominate a vertex u if u = v or there exists
a copy F' of F rooted at u and containing the red vertex v. The set S of red vertices in a
red-blue coloring of G is an F-dominating set of G if every vertex of G is F-dominated by
some vertex of S, that is, this red-blue coloring of G is an F-coloring. The minimum number
of red vertices in an F-dominating set is called the F-domination number vr(G) of G. An
F-dominating set with vr(G) vertices is a minimum F-dominating set. The F-domination
number of every graph G is defined since V(@) is an F-dominating set.

To illustrate these concepts, consider the three 2-stratified graphs Hi, Ho, and H3 and the
graph G of Figure 1, where solid vertices denote red vertices and open vertices denote blue
vertices. Each of the 2-stratified graphs Hi, Ho, and Hj3 has the same 2-stratification of the
path Py of order 4 but is rooted at a different blue vertex. A minimum H;-dominating set of
G with exactly 7 red vertices is also shown in that figure for ¢ = 1,2, 3. Therefore, vy, (G) =i
for 1 = 1,2,3. We refer to the books [4, 7] for graph theory notation and terminology not
described in this paper.

2 F3;-Domination in Graphs

For a graph G, the domination number v(G) of G is the minimum number of vertices in a
dominating set for G. A dominating set of cardinality v(G) is called a minimum dominating
set. The minimum cardinality of an open dominating set is the open domination number v,(QG)
of G. An open dominating set of cardinality v,(G) is a minimum open dominating set for G.
There are five possible choices for the 2-stratified P; rooted at a blue vertex v shown in Figure 2.
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Figure 1: A minimum H;-dominating set (i = 1,2,3) for a graph G

It was shown in [3] that if G is a connected graph of order at least 3, then vp, (G) = v(G),
vr, (G) = 70(G), 77, (G) = 7 (G), and vr, (G) = 72(G), where y(G) is the domination number,
70(G) is the open domination number, v,(G) is the restrained domination number and 2(G)
is the 2-domination number (see [7, 8]). The parameter g, is new and has been studied in [6].
In this work, we continue the study of F3-domination.
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Figure 2: The five 2-stratified graphs P;

For simplification, we write F' = F3 unless otherwise stated. Since the 2-stratified graph F
contains exactly one red vertex, 1 < vp(G) < n for every connected graph G of order n. The
following result was presented in [6].

Theorem 2.1 Let G be a connected graph of order n > 3. Then yr(G) = n if and only if
G = Kipn—1, and vr(G) = 1 if and only if G contains a vertex whose neighborhood is an open
dominating set of G. If G is a bipartite graph, then yg(G) > 2. In particular, if T is a tree,
then yr(T') = 2 if and only if T is a double star.

For every nontrivial connected graph G, 7(G) < 7,(G). Other than this requirement, there
is no other restriction on the relative values of 7(G), v7,(G), and yr(G). That is, it is possible
that (i) v#(G) < Y(G) < 7(G), (i) 7(G) < 71(G) < y#(G), and (iii) ¥(G) < 7r(G) < 70(G).
This gives rise to the following natural question.

Problem 2.2 For which triples (A, B,C) of positive integers, does there exist a connected
graph G such that v(G) = A, 7,(G) = B, and yr(G) =C?



Since 7(G) < 7,(G) < 29(G) and v,(G) > 2 for every nontrivial connected graph G, no
triple (A, B,C) of positive integers with A > B, B > 2A, or B = 1 can be realized, respectively,
as the domination number, the open domination number, and the F-domination number of any
connected graph. For this reason, by a triple, we mean an ordered triple (A, B,C) of positive
integers with A < B < 24 and B > 2. We define a triple (A, B,C) to be realizable if there
exists a connected graph G such that v(G) = A, 7,(G) = B, and yr(G) = C. Observe that
v(K3) = 1, 7,(K3) = 2, and yp(K3) = 1. For C > 2, v(Kic—1) = 1, 7(Ki1c-1) = 2, and
vr(K1c-1) = C. Therefore, we have the following.

Observation 2.3 Ewvery triple (1,2,C) is realizable.

In [6] the existence of graphs G was investigated for which y¢(G) = 1 and v(G) and v,(G)
could have a wide variety of values. Also, the existence of graphs G was studied for which
Y(G) = vr(G) = 7,(G) = k for various values of k. In particular, the following two results
were obtained.

Theorem 2.4 For each pair A, B of integers with 1 < A < B < 2A and B > 2, there exists
a connected graph G with yr(G) = 1 such that v(G) = A and v,(G) = B.

Theorem 2.5 For each integer k > 2, there exists a connected graph G such that v(G) =
1r(G) = 7(G) = k.

Theorems 2.4 and 2.5 now have two immediate corollaries.

Corollary 2.6 Every triple (A, B,1) is realizable.
Corollary 2.7 Every triple (k,k, k) is realizable for each integer k > 2.

Not every triple is realizable, however. In order to show this, the following lemma from [6]
is useful.

Lemma 2.8 Let G be a connected graph of order at least 3. If H is a connected subgraph of
G, then
r(G) + |[V(H)| < [V(G)| +yr(H).

In particular, if H is a spanning subgraph of G, then yp(G) < yp(H).

Proposition 2.9 Let k > 2 be an integer. If G is a connected graph with v(G) = v,(G) = k,
then vyr(G) < k and so no triple (k,k,C) is realizable for C > k.

Proof. Let G be a connected graph with 7(G) = 7,(G) = k and let S be a minimum open
dominating set of G. Necessarily S is also a minimum dominating set. Let v1 € S. Since S is
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a minimum dominating set and G is connected, there exists u; ¢ S such that u; is dominated
by vi. Since S is a minimum dominating set, there is ug ¢ S that is not dominated by v;. Let
vg € S such that ve dominates ug. If k > 3, then there is ug ¢ S that is not dominated by any
vertex in {v1,vy}. Let vg € S such that v3 dominates uz. Continuing in this manner, we arrive
at the set U = {u1,ug,---,ux}. We claim that U is an F-dominating set of G. Let z € V(G).
If £ = wu; for 1 <1i <k, then z is F-dominated by itself. If x = v; for some i (1 <14 < k), then
since S is a minimum open dominating set of G, there is a v; € S that is adjacent to v;. Then
v; is F-dominated by u;. Otherwise, z ¢ U U S. Since S is a dominating set, z is adjacent to
some vertex v; (1 <4 < k). Then z is F-dominated by u;. Thus, yr(G) < |U| = k. Therefore,
(k,k,C) is nonrealizable for any C > k. n

3 Which Triples are Realizable?

As we haven seen, there are infinitely many realizable triples and infinitely many nonrealizable
triples. We now investigate the problem of determining which triples are realizable. To simplify
the notation, we classify triples into the following three categories:

A triple (A, B,C) is of type I if C < A< B;
A triple (A, B,C) is of type II if A< B <C;
A triple (A, B,C) is of type III if A< C<B.

Some additional information and notation from [6] will be useful to us.

Lemma 3.1 Let v be an end-vertex of a connected graph G that is adjacent to the vertex u.
Furthermore, let ¢ be an F-coloring of G. Then v is colored red by c if either of the following
two conditions are satisfied: (1) degu = 2, (2) u is colored red by c.

For positive integers %, 7, and ¢, define the graph J; to be a copy of H; in Figure 3, where
V(Ji) = {uio0,ui1,ui2, *,uie} such that u;, corresponds to u, in H; for 0 < p < 6; define
the graph G; to be a copy of Hy in Figure 3 where V(G;) = {vj0,v;,1,v;2,vj3} such that v; 4
corresponds to vy in Hy for 0 < ¢ < 3; and define the graph I; to be a copy of H» in Figure 3,
where V (I;) = {wt0, w1, w2, we 3} such that wy , corresponds to v, in Hy for 0 < ¢ < 3.

v,
u3 U4 3
u2 us
Ul U

uo vo

Hl H2

Figure 3: The graphs H; and Hs



3.1 Realizable Triples of Type I

In this section, we show that every triple of type I is realizable.
Theorem 3.2 FEvery triple (A, B,C) of type I is realizable.

Proof. By Corollaries 2.7 and 2.6, the result holds for C = A = B or C = 1. Thus it suffices
to consider three cases, according to whether 2 < C < A < B <24,2<C< A=2B,or
2<C=A<B<2A. We will only prove the first case in detail.

Casel. 2<C<A<B<L2A. Let A=C+kand B=C+¥4. SinceC< A< B<2A,it
follows that 1 < k < £ < C + 2k. We consider three cases, according to whether k£ < ¢ < 2k,
2k <L <C+2k,or £ =C+ 2k.

Case 1. k < £ < 2k. Let G be the graph obtained from the graphs J;, G; and I;
(1<i<l—-k,1<j<2k—{ and1<t<C—1) by identifying all vertices u; 0, vj0 and w3
and labeling the identified vertex v.

We first show that v#(G) = C. Since {v} U{w2 : 1 <t < C — 1} is an F-dominating
set, 7#(G) < C. On the other hand, let ¢ be a minimum F-coloring of G. If v € R, then
wy,1 can be F-dominated only by some vertex in V(I;) — {v} for 1 < ¢ < C — 1. This implies
that R, contains at least one vertex from each set V(I;) — {v} for 1 < ¢t < C — 1. Hence
v#(G) = |R;] > 14 (C — 1) = C. Thus, we may assume v ¢ R.. Since wyo must be F-
dominated by a vertex in V(I;) — {v} for 1 <t < C — 1 and u;3 is only F-dominated by a
vertex in V (J;) — {v} for 1 <i < £ —k, it follows that

Yr(G) =R > (C—-1)+ (L —k) >C,
and so yr(G) = C. Furthermore, observe that
S={v}U{u3: 1 <i<l—Fk}U{vj1:1<j<2k—-L}U{w:1<t<C—1}

is a minimum dominating set of G and SU{u;2 : 1 <4 < £/—k} is a minimum open dominating
set of G. Therefore, 7(G) = A and ~,(G) = B.

Case 2. 2k < ¢ < C+ 2k. Let G be the graph obtained from the graphs J; and G, for
1<i<{l—kand1<j<C+2k—£—1by (1) identifying all vertices u; o and vy and labeling
the identified vertex v and (2) adding C — 1 new vertices w; (1 < ¢ < C — 1) and joining each

wy to .

We first show that yp(G) = C. Since {v} U{w; : 1 <t < C — 1} is an F-dominating set,
vr(G) < C. On the other hand, let ¢ be a minimum F-coloring of G. If v € R, then w; € R,
for 1 <t <C—1andso vr(G) = |Rc| > C. Thus, we may assume that v ¢ R.. Since u;3 is
only F-dominated by a vertex in V(J;) — {v} for 1 <i < ¢ —k and v;3 is only F-dominated
by a vertex in V(G;) — {v} for 1 <j <C+ 2k — ¢ — 1, it follows that

YP(G)=|Rc| > (l—k)+(C+2k—L—-1)=C+k—-1>C



and so yp(G) = C. Furthermore, since
S:{’U}U{ui,gil SiSé—k}U{’UjJ:l §j§C+2k—€—1}

is a minimum dominating set of G and SU {u;2:1 <i </ —k} a minimum open dominating
set of G, it follows that v(G) = A and 7,(G) = B.

Case 3. £ =C+ 2k. In this case B = 2A. Let p > 2 be an integer. For each integer 7 with
1<i<A-CH+1,let M; be the graph obtained from the path wu;, y;,v; by (1) adding 2p new
vertices r; ; (1 <j < 2p), (2) joining each vertex r; ; (1 < j < p) to u; and y;, and (3) joining
each vertex r;; (p +1 < j < 2p) to y; and v; (see Figure 4). The graph M is then obtained
from the A — C + 1 copies of M; and a new vertex z by (1) joining x to y; and to each vertex
in the set {u;,v; : 1 <i¢ < A—C+ 1} and (2) joining v; to u;41 for all ¢ with 1 <i < A-C
and v4_c41 to ug. For each integer ¢ with 1 <t < C — 1, let T} : wy1, w2, w3 be a copy of
P;. Then the graph G is obtained from the graphs M and T; (1 < ¢t < C — 1) by joining each
we1 (1<t <C—1) toz.

Figure 4: The graph M;

We first show that yr(G) = C. Since {z} U {wi3:1 <t <C— 1} is an F-dominating set,
vr(G) < C. To show that v¢(G) > C, let ¢ be a minimum F-coloring of G. By Proposition 3.1,
w3 € Re for 1 <t < C —1. Since z, for example, is not F-dominated by any vertex w; 3
(1 <t<C-1),it follows that y(G) > C — 1. Therefore, y(G) = C. Moreover, observe that

{wip:1<t<C—1}U{gi:1<i<A-C+1}
is a minimum dominating set of G and that
{wt,l,wt,g:lgtSC—l}U{ui,vi:l§z’§A—C+1}

is a minimum open dominating set of G. Thus v(G) = A and 7,(G) = 2.A.

Case II. 2<C< A=B. Let A=C+ k, where k > 1. For C = 2, let G be the graph
obtained from the graphs G for 1 < j < A —1 by identifying all vertices v; ¢ and labeling the
identified vertex by v and adding one new vertex u together with the edge uv. Then {v,u} is
a minimum F-dominating set, y#(G) = 2. Furthermore, since {v} U{v;; : 1 <j < A -1}
is both a minimum dominating set and a minimum open dominating set of GG, it follows that
Y(G) = v(G) = A. Now assume that C > 3. For each 7 with 1 < i < C — 2, let X; be



the graph obtained from the 5-cycle x; 1, x;2, T;3, Ti4, Tis5, i, by adding a new vertex z; o
and joining z; 9 to z; 1, =;3, and z; 4. Now, let G’ be the graph obtained from the graphs X;
and Gj for 1 <i<C—-2and1<j<A-C+1 by (1) identifying all vertices z; o and v;
and labeling the identified vertex by v and (2) adding a new vertex u and the edge uv. Since
{v,u}U{z;1:1<i<C—2}is a minimum F-dominating set, y#(G) = C. Since

{v}U{z;1:1<i<C-2}U{v;1:1<j<A-C+1}

is both a minimum dominating set and a minimum open dominating set of GG, it follows that
Y(G) =7(G) = A.

CaseIIl. 2<C=A<B<2A. Let B=A+/4, where 1 < /¢ < A. We consider two cases,
according to whether 1 </ < A, or £ = A.

Casel. 1</l< A. If A=2and B = 3, then let G be the graph obtained from the graph
H, by adding a new vertex u and the edge uou. Then {u,up} is a minimum F-dominating
set, {ug,u4} is a minimum dominating set and {ug, u4, us} is a minimum open dominating set.
Therefore, v(G) = vr(G) = 2 and v,(G) = 3. Thus, we can assume that A > 3. Let G be
the graph obtained from the graphs J; and G for 1 <7 </fand1<j < A—-{¢—1 by (1)
identifying all vertices u;o and v;o and labeling the identified vertex v and (2) adding A — 1
new vertices wy (1 <t <A — 1) and joining each w; to v. (Note that if £ = A — 1, then there
is no graph G; in the construction of G.) Since {v} U{w; : 1 <t < A — 1} is a minimum
F-dominating set, yr(G) = A. Furthermore, since

S:{’U}U{ui,gi1S’i§£}U{vj’1:1§j§A—£—1}

is a minimum dominating set of G and S U {u;2 : 1 < i < £} is a minimum open dominating
set of G, it follows that v(G) = A and v,(G) = B.

Case 2. £ = A. In this case, B = 2A. Let p > 2 be an integer. Let M be the graph
obtained from the graph M; in Figure 4 by adding a new vertex z and joining x to each vertex
in {u1,v1,y1}. For each integer j with 1 < j < A —1, let T} : wj 1, wjz2,w;3 be a copy of Ps.
Then the graph G is obtained from the graphs M and T; (1 < j < A — 1) by joining each
wjp (1 <j<A-1)toz. Since {z} U{w;3:1<j < A—1}is a minimum F-dominating
set, 77(G) = A. Since {y1} U{wj2:1<j < A-1}is a minimum dominating set of G and
{z,y1} U{w;1,wj2:1 < j < A-1} is a minimum open dominating set of G, it follows that
Y(G) = A and 7,(G) = 2A. ]

3.2 Realizable Triples of Type II

Recall that a triple (A, B,C) is of type IT if A < B < C. By Proposition 2.9, each triple (k, k,C)
of type II is nonrealizable for C > k > 2. In this section we show that all other triples of type
IT are realizable, beginning with those triples for which B = 2.A4.

Theorem 3.3 FEvery triple (A, B,C) of type II with B = 2.A is realizable.



Proof. By Observation 2.3, every triple (1,2,C) is realizable for each positive integer C. Thus
we may assume that A > 2. Let P : vy,v9,--,v34_2 be a path of order 34 — 2 and let G be
the caterpillar obtained from P by adding C — A — 1 > 1 pendant edges at each vertex vs; 1
for 0 <i < A—1. For A=2,3,4, the graph G is drawn in Figure 5.

.
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V1 v2 v3 v4 U5 Ve v7
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Figure 5: The graph G for A =2,3,4
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For each vertex v3;r1 (0 <1 < A—1), let W; = N(v3ir1)—V(P). We show that v#(G) = C.

Since
S =W U{Ul}U{vgi+2 :0<1 < .A—Q}U {UJA_l},

where w4_; € W4_1, is an F-dominating set, yr(G) < |S| = C. To show that vr(G) > C, let
¢ be a minimum F-coloring of G.

First, we show that if v; € R, then |R;| > C. Suppose that v; € R.. Then necessarily,
Wo C R.. We verify the following two claims.

Claim 1. At least one vertex in {v3;12,V3i+3,V3i+4} U Wit1 must be red for each 7 with
0 <i < A—3. Assume, to the contrary, that each vertex in {v3;42,v3;43,v3j44}UWj41 is blue
for some j with 0 < j < A — 3. Then a vertex in W) can only be F-dominated by v3;;5 and
so v3j4+5 € R.. However then, v3;4 is not F-dominated by any vertex in R., a contradiction.
Therefore, at least one vertex in {vsjt2,v3i+3,v3i+4} U Wit1 isred for 0 < j < A4 — 3.

Claim 2. At least two vertices in {v3a—4,v34-3,v34—2} U W4_1 must be red. Since
wa—1 € Wy is only F-dominated by vsa_3 or by a vertex in W4_1, either v3s_3 is red
or some vertex in W4_; is red. Furthermore, since v34—o is only F-dominated by v34—_9 or
by v3a_4, it follows that v3a o € R, or vsa 4 € R.. Therefore, at least two vertices in
{v3a_4,v34_3,v34_2} UW 41 are red.

Since {v1} U Wy C R, it then follows by Claims 1 and 2 that

Ye(G) = |Re| > 1+ |Woy|+ (A—-2)+2
= 1+(C-A-1)+(A-2)+2=C.

Therefore, if v; € R, then |R.| > C. We now consider two cases.



Case 1. Suppose that v3i11 € R, for some i (0 <7< .A—1). Let j be the smallest integer
i such that vs; 11 € R.. If j =0, then v; € R, and we have seen that |R.| > C. Hence, we may
assume that 1 < j < A—1. Thus vzj;1 € Reand W; CR.. If j < A—1and j <i<A-2,
then an argument similar to the situation where v; € R, shows that at least one vertex in
{v3i+2,V3i+3, V3i+4 } U Wiy1 must be red. We now show that if 0 <4 < j — 1, then some vertex
in {v3;11,V3i+2, v3i43} UW; isred. If j > 2, then we first consider v3;41, where 1 <4 < j. Thus
v3i+1 18 blue and is either F-dominated by wvs;y3 or by vs;—1. If v3;41 is F-dominated by vs;43,
then vs;y3 € Re. If vg41 is F-dominated by wvs;_1, then vs;_; € R, and vs; is blue. Hence
either vg;12 € R. or w; € R, for some w; € W;. For i = 0, the blue vertex v; can only be
F-dominated by vs and the blue vertex vy can only be F-dominated by a vertex in Wy. Thus
at least two vertices in {v1,v2,v3} U Wy must be red, which implies that

vr(G)=|Re| >2+ (G -1 +14+(C-A-1)+(A-2—37+1)=C.

Case 2. Suppose that vsi+1 is blue for every integer i (0 <i < A—1). We claim that vs;;+1
is blue and vs; 3 is red for every integer i (0 <7 < A —2). We verify this by induction. First,
because vy is blue, v; can only be F-dominated by vs and so vz € R.. In addition, this says
that vy is blue and so some vertex in Wy is red. Assume that vsg; is blue and vsg43 is red,
where 0 < k < A — 2. By the assumption in Case 2, v3x,4 is blue. Since vgx,4 is blue and
U3k+3 1S red, vsgi4 can only be F-dominated by wvsii¢ and so vsgyg is red. This verifies the
claim. Thus V3(A—2)43 = V3A-3 is red. If v34_o is blue, then vz 4o is not F-dominated by any
vertex. Hence v34_9 € R, and so W4_1 C R, as well. Therefore,

Yr(G) =|Re| > (A-1)+1+1+(C—-A—-1)=C,

as desired. Furthermore, since {v3;+1 : 0 <4 < A — 1} is a minimum domination set and for
w; € W; with 0 <i < A—-1, {vzi11,w; : 0 <i<.A—1} is a minimum open domination set,
v(G) = A and 7,(G) = 24 = B. "

It remains to consider those triples (A, B,C) of type II with B # 2A. For a positive integer
a, let L, be the graph shown in Figure 6. Since {w,y} is a minimum dominating set, {w, z, y}
is a minimum open dominating set, and {w,z} U{w; : 1 <14 < a} is a minimum F-dominating

set, Y(La) = 2, Yo(La) = 3, and yr(Ly) = a + 2 for every integer o > 1.

Figure 6: The graph L,

Theorem 3.4 Let (A, B,C) be a triple of type II such that B # 2A. If (A,B,C) # (k,k,C)
where C > k > 2, then (A, B,C) is realizable.
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Proof. Observe that A > 2. By Corollary 2.7 and Proposition 2.9, it suffices to consider two
cases, according to whether 2 < A< B<Cor2< A< B=C.

Case . 2< A< B<C. If A=2,then B =3, and C > 4. Note that the graph L¢_»
has the desired properties. Thus, we may assume that A > 3. Let B=A+kandC = A+ /.
Since A < B < 24 and B < C, it follows that 1 < k < A —1 and k£ < £. We consider three
cases, according to whether k =1,2< k< A-2 ork=A-1.

Case 1. k = 1. Let G be the graph obtained from the graph L¢_o and the A — 2 graphs
G; (1 <i < A—2) by identifying all the vertices v; o and w and calling the new vertex v.
Since S = {v,z} U{w; : 1 < j <C — 2} is a minimum F-dominating set, yr(G) = C. Observe
that S = {v,y} U{v;1 : 1 <i < A—2} is a minimum dominating set of G and SU {z} is a
minimum open dominating set of G; so v(G) = A and ~,(G) = B.

Case 2. 2 <k < A—2. Let G be the graph obtained from the graph L¢_5 and the graphs
Ji, Gjfor 1 <i<k—-1and1<j<A-Fk—1 by identifying all vertices u;0,v;0 and w and
labeling the identified vertex v. Since {v,z}U{w; : 1 <t < C—2} is a minimum F-dominating
set, 7r(G) = C. Furthermore, since

S={v,y}U{uj3:1<i<k—-1}U{v1:1<j<A-k—-1}

is a minimum dominating set of G and SU {z} U{u;2 : 1 < i < k — 1} is a minimum open
dominating set of G, it follows that v(G) = A and 7,(G) = A+ k = B.

Case3. k=A—1. Then B=A+k=2k+1andC=A+{¢=Fk+{+ 1. Let G be the
graph obtained from the graph L¢_o and the graphs J; for 1 < i < k — 1 by identifying all
vertices u;0 and w and labeling the identified vertex v. Since {v,z} U{w;:1<j <C -2} is
a minimum F-dominating set, v#(G) = C. Observe that

S={v,y}U{u;3:1<i<k—-1}
is & minimum dominating set of G and
SU{z}U{uja:1<i<k-1}
is a minimum open dominating set of G; so v(G) = A and v,(G) = B.

Case II. 2 < A< B=C. If A=2, then B =3 and the graph L; has the desired
properties. Thus, we may assume that A > 3. Let B = A+ k. Since A < B < 2A, it follows
that 1 < k < A. We consider three cases, according to whether k = 1,2 < k < A —2, or
k=A-1

Case 1. k =1. Let G be the graph obtained from a copy of the graph Lz 5 and the A —2
graphs G; (1 <1i < A —2) by identifying all the vertices v; ¢ and w and calling the new vertex
v. Since {v,z} U{w; : 1 < j < B — 2} is a minimum F-dominating set, y#(G) = B. Observe
that

S={v,y}U{v;1:1<i<A-2}
is a minimum dominating set of G and S U {z} is a minimum open dominating set of G; so

v(G) = A and v,(G) = B.
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Case 2. 2 <k < A—2. Let G be the graph obtained from the graph Lg_5 and the graphs
Ji, Gjfor1<i<k—1and1<j<A-—k—1 by identifying all vertices u; 0, v;0 and w and
labeling the identified vertex v. Since {v,z}U{w; : 1 <t < B—2} is a minimum F-dominating
set, yr(G) = B. Since

S={v,ytU{ui3:1<i<k—-1}U{v1:1<j<A-k—-1}

is a minimum dominating set of G and SU{z}U{u;2 : 1 <1i < k—1} it follows that v(G) = A
and 7,(G) = A+ k = B.

Case3. k= A—1. Then B = A+k =2k+1. Let G be the graph obtained from the graph
Lp 5 and the graphs J; for 1 < ¢ < k — 1 by identifying all vertices u;p and w and labeling
the identified vertex v. Since {v,z} U {w; : 1 < j < B — 2} is a minimum F-dominating set,
vr(G) = B. Since

S={v,ytU{u;3:1<i<k-1}

is a minimum dominating set of G and
SU{.’IZ}U{UZ',QZI Sigk—l}

is a minimum open dominating set of G, it follows that v(G) = A. and ~,(G) = B. n

Combining Proposition 2.9 and Theorems 3.3 and 3.4, we have the following.

Corollary 3.5 A triple (A, B,C) of type II is realizable if and only if (A, B,C) # (k,k,C) for
any integers k and C with C > k > 2.

3.3 Realizable Triples of Type III

Recall that a triple (A, B,C) is of type III if A < C < B. In this section we show that every
triple (A, B,C) is of type III is realizable, beginning with those triples for which B = 2A.

Theorem 3.6 Every triple (A, B,C) of type III with B = 2.A is realizable.

Proof. By Proposition 2.3, (1,2,1) and (1,2,2) are realizable. Thus, we may assume that
A > 2. First, suppose that A = C. Let G be the graph obtained from the cycle Csy4 :
V1,09, ,U34, 01 by adding the pendant edge u;v3;41 for 0 <7 < A —1. Since {v3j42:0 <7 <
A —1} is a minimum F-dominating set, yr(G) = A. Observe that S = {v3;41 : 0 <i < A—-1}
is a minimum dominating set and SU{u; : 0 <4 < A— 1} is a minimum open dominating set;
so 7(G) = A and ,(G) = 2A.

Next, suppose that A < C. If C > A+2, thenC—.A—1 > 1. Let G be the graph constructed
in Theorem 3.3, that is, let G be the caterpillar obtained from the path P : v1,v9,---,v34_2
of order 34 — 2 by adding C — A —1 > 1 pendant edges at each vertex vz;4+1 for 0 <7 < A—1.
For each vertex vs;+1 (0 <7< A—1),let W; = N(vsi4+1) — V(P). For wa_1 € Wy,

12



S:WOU{Ul}U{’lJ3i+2 :Ogig.A—2}U{wA,1},

is a minimum F-dominating set by the proof of Theorem 3.3. Thus vr(G) = |S| = C. Fur-
thermore, since {v3j+1 : 0 <7 < A — 1} is a minimum domination set and for w; € W; with
0 <i<A-1, theset {v3;11,w; : 0 <i < . A—1} is a minimum open domination set. Therefore,
7(G) = A and 7,(G) = 24 = B.

Thus, we may assume that C = A+ 1. Let P : v1,v9, - -,v34_2 be a path of order 3.4 — 2
and let H be the caterpillar obtained from P by adding three pendant edges at each vertex
v3i41 for 0 <7 < A — 1. For each vertex v3;11 (0 <i < A—1), let W; = N(v3i+1) — V(P).
The graph G is then obtained from H by joining two vertices in W4 1. For A = 2,3,4, the
graph G is drawn in Figure 7.

A=2 O *
U1 v2 v3 V4
A—3. O\ . C\I/ o A
/}1 V2 v3 v4 Vs Ve JNO

v1 v2 v3 V4 Vs Ve v7 vg vg v10

Figure 7: The graph G for A =2,3,4
For w; € W; for i =0, A — 1, where degw 4 1 = 2,
S = {wO,’wA_l}U{’UgZ' 11<i<A- 1}

is an F-dominating set and so yr(G) = |S| = A+ 1. To show that yr(G) > A+ 1, let ¢ be a

minimum F'-coloring of G.

First, we show that if v; € R, then |R.] > A+ 1 = C. Suppose that v; € R.. Then
necessarily, Wy C R.. We verify the following claim.

Claim. At least one vertex in {v3;12,v3i+3,v3;+4} U Wit1 must be red for each i with
0 <i< A-—2. Assume, to the contrary, that each vertex in {v3j+2, V3543, ’U3j_|_4} UWjy1 is blue
for some j with 0 < j < A — 2. First suppose that 0 < j < A — 3. Then a vertex in W) can
only be F-dominated by v3;,5 and so v3j,5 € R.. However then, v3;,4 is not F-dominated by
any vertex in R, a contradiction. Next suppose that j = A—2. Then w4 1 € W4_1 can only
be F-dominated by v34—3 or by a vertex in W4_1 and so either vs4_3 is red or some vertex in
W 4_1 is red.

Since {v1} U Wy C R,, it then follows by the claim
1(G) = [Re| 21+ |[Wo|+(A-1)
= 143+A-1)=A+3>A+1=C.
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Therefore, if v; € R,, then |R.| > C. Since this is impossible, it follows that v; is blue. We

now consider two cases.

Case 1. w341 € R for some i (1 < i < A—1). Let j be the smallest integer i such
that v3iy1 € R,. Thus v3jy1 € Roand Wy C R.. If j < A—1land j < i < A-2
then an argument similar to the situation where v; € R, shows that at least one vertex in
{v3i+2,V3i+3, V3i+4 } U Wiy1 must be red. We now show that if 0 <4 < j — 1, then some vertex
in {v3i11,V3i+2, U343} UW; isred. If j > 2, then we first consider v3;41, where 1 <4 < j. Thus
v3i+1 18 blue and is either F-dominated by wvs;y3 or by vs;—1. If v3;41 is F-dominated by vs;43,
then vs;y3 € Re. If vg41 is F-dominated by wvs;_1, then vs;_; € R, and ws; is blue. Hence
either vg;12 € R. or w; € R, for some w; € W;. For i = 0, the blue vertex v; can only be
F-dominated by vs and the blue vertex vy can only be F-dominated by a vertex in Wy. Thus
at least two vertices in {v1,v2,v3} U Wy must be red, which implies that

Yr(G) =|Re| 22+ (i —1)+14+3+(A—-2—-j+1)=A+4>A+1=C.

Thus Case 1 cannot occur.

Case 2. v3j41 is blue for every integer i (0 < i < A —1). We claim that vs;;1 is blue and
v3;+3 is red for every integer i (0 < i < A — 2). We verify this by induction. First, because
vy is blue, v; can only be F-dominated by v3 and so vs € R.. In addition, this says that ve
is blue and so some vertex in W) is red. Assume that vsx,1 is blue and v3g3 is red, where
0 <k < A-2. By the assumption in Case 2, v3iy4 is blue. Since vsgi4 is blue and vzgy3
is red, v3;+4 can only be F-dominated by vsgie and so vsgi6 is red. This verifies the claim.
Thus V3(A-2)4+3 = U3A-3 is red. Since v34_9 can only be F-dominated by v34_o or by a vertex
of degree 2 in W 4_1, it follows that either vs4_o is red or a vertex of degree 2 in W 4_1 is red.
Therefore,

vr(G)=|R| >2+(A—-2)+1=A+1=C,

as desired. Furthermore, since {v3j+1 : 0 < i < A — 1} is a minimum domination set and
{vsit1,w; : 0 <1 < A—1}, where w; € W;, is a minimum open domination set, it follows that
v(G) = A and v,(G) = 24 = B. ]

Theorem 3.7 Ewvery triple (A, B,C) of type III with B < 2A is realizable.

Proof. By Corollary 2.7 and Case IT (2 < A < B =C < 2A) in Theorem 3.4, we need only
consider the two cases 2 < A<C<B<2A4Aand2<A=C< B<2A.

Case I. 2 < A< (C < B < 2A. Necessarily, A > 3 in this case. Let C = A+ k and
B=A+£ Since A< C < B < 2A, it follows that 1 < k < £ < A. Thus, we consider two
cases, according to whether 2 < /< A—-2,0or £ =A— 1.

Case 1. 2<£< A—2. Let G be the graph obtained from the graph L¢_o and the graphs
Ji, Gjfor1<i<f—1and1<j<A~-/—1 by identifying all vertices u;o,v;0 and w and
labeling the identified vertex v.
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Since {v,z} U{wy : 1 <t < C — 2} is an F-dominating set, yr(G) < C. On the other
hand, let ¢ be an F-coloring of GG. Since ¥ is only F-dominated by v or y, it follows that either
v € R.or y € R.. Thus either W1 = {v} U{w; : 1 <t <C—-2} C R, or Wo = {y}U{y; :
1 <t<C—-2} CR,.. In either case, |R;| > C — 1. If yp(G) = C — 1, then either R, = W; or
R, = W5. However then, the blue vertex z is not F-dominated by any vertex in R., which is
a contradiction. Therefore y¢(G) = C. Furthermore, since

S={v,ytU{uj3:1<i<l—-1}U{v;1:1<j<A-{—-1}
is a minimum dominating set of G and
SU{z}U{ujp:1<i<l—1}

is a minimum open dominating set of G, it follows that v(G) = A and 7,(G) = A+ £ = B.

Case2. {=A—-1. Then B=A+{¢=2+1andC=A+k=Fk+ £+ 1. Let G be the
graph obtained from the graph Lc_s and the graphs J; for 1 < i < £ — 1 by identifying all
vertices u; 9 and w and labeling the identified vertex v.

Since {v,z} U{w; :1 < j <C — 2} is a minimum F-dominating set, yr(G) = C. Since
S={v,ytU{u;3:1<i<l-1}
is a minimum dominating set of G' and
SU{z}U{uja:1<i<l—1}
is a minimum open dominating set of G, it follows that v(G) = A. and ,(G) = B.

Case II. 2< A=C< B. If A=2, then since A < B < 2A4, it follows that B = 3. Let G
be obtained from the graph K; — e and the path P, : z,y by joining z to a vertex of degree
2 in K4 —e. Then v(G) = vr(G) = 2 and ~,(G) = 3. Thus we may assume that A > 3. Let
B = A+ k. In the remaining proof , we consider three cases, according to whether & = 1,
2<k<A-2 or k=A—1. The proof is similar to that in Case I and is therefore omitted. m

Combining Theorems 3.6 and 3.7, we have the following.
Corollary 3.8 FEvery triple of type 111 is realizable.

By Theorem 3.2 and Corollaries 3.5 and 3.8, we have the main result of this paper.

Theorem 3.9 A triple (A, B,C) is realizable if and only if (A, B,C) # (k, k,C) for any integers
k and C withC > k > 2.
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